ENGINEERING DATA

LCH-12E

Energy Recovery Ventilator 1200 CFM (566 L/s)

Item No. 463305

FEATURES

- · Push-pull configuration
- 4 Operating modes (Intermittent; Continuous; High)
- Dual service doors & reversible electrical box

APPLICABLE REQUIREMENTS

- Technical data was obtained from published results of test relating to AHRI 1060 Standards
- CSA Standard CSA 22.2 Nº.113-10 Fans and ventilators
- UL Standard 1812 2nd Ed. Ducted heat/energy recovery ventilators (HRV/ERV)

OPTIONS

• 463309 GTPDK20 O/A motorized prevention damper kit

CABINET

· 20 gauge galvanized pre-painted steel corrosion resistant

ELECTRONIC COMPONENTS

- Electrical Input Voltage: 120 VAC/60Hz / 1-Phase
- Electrical Input Current: 11.17 Amps Max
- · Integrated auxiliary furnace interlock relay
- Intergrated 24V connection (18VA)
- · RoHs compliant

MOTORS

- Four (4) factory balanced fans with backward curved blades.
- Motors come with permanently lubricated sealed ball bearings, mantenance free
- Thermal overload protection
- 115V, 60Hz, 2.92 Amps
- Maximum RPM 2750 / Horsepower; 0.42 HP

POLYMER MEMBRANE ERV CORE

- Dimensions (3) 12" x 12" x 15" depth (305 mm x 305 mm x 380 mm)
- Corrugated aluminum layers, combined with advanced polymer membrane, UL94 HF-1
- Transfers both sensible & latent heat.
- Endure harsh temperatures; effective in warm and cold climates
- · Water washable
- Meets ASHRAE 90.1

DEFROST

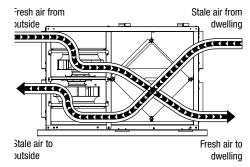
- · Advanced supply fan shut down defrost sequence
- Defrost type: Evacuation Activated automatically at -5°C (23°F)

DUCT CONNECTIONS

• (4) 8"x 20" (203 mm x 508 mm)

MOUNTING

- Saddle installation
- Suspended installation with threaded rod (not included)


FILTERS (MERV3)

 The FRESH/EXHAUST air streams are protected by MERV3 washable filters constructed to meet UL 900.

WARRANTY

- 2 year limited warranty on motors
- 2 year limited warranty on parts
- 3 year limited warranty on Heat Recovery Core

AIRFLOW

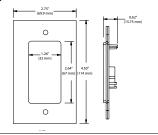
Greentek

50 Kanalflakt Way, Bouctouche, NB Canada E4S 3M5

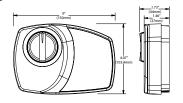
Toll free: 1 888 724-5211 Fax: 1 (866) 426-7430 Visit us at: www.greentek.ca 444896 / May 2022

Greentek reserves the right to modify a product, without prior notice, whether in design, colour or specifications, in order to offer at all times a quality product that is highly competitive. Please consult your national and local building codes to find out whether the installation of electrical products requires the services of a certified technician or electrician. Greentek[™] is a registered Trademark used under license by Systemair Inc. All rights reserved.

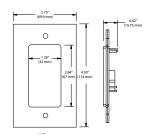
ENGINEERING DATA LCH-12E

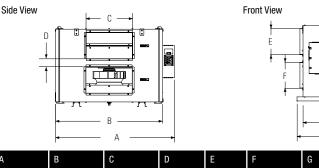

SPECIFICATIONS LCH-12E Dimensions 51.6" x 36.2" x 22" (1310mm x 920mm x 559 mm) **Duct Connections** Four (4) 8"x 20" (203mm x 508mm) **Airflow Rates** 1200 CFM (566 L/s) Four (4) factory balanced fans Motor with backward curved blades Voltage 120 VAC @ 60 Hz / 1 Phase **Amperage** 11.17A / 1340 Watts Type of Heat Exchanger (3) Cross-flow (Enthalpic Polymer Membrane) **Exchange Surface** >513 in2 (0.33m2) Standard Defrost Type Evacuation **Filters** Six (6) MERV3 washable filters **Drain Connection** Two (2) 1/2" (12.7 mm) **Actual Weight** 232 lbs (105 Kg) 280 lbs (127Kg) **Shipping Weight Shipping Dimensions** 38" x 53" x 27" (965mm x 1346mm x 686mm) CCSAUS, CSA 22.2 Nº.113 Certification Complies with UL 1812

OPTIONAL WALL CONTROLS

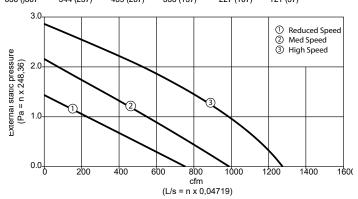

Vectra Series	EHC 1.5 and EHC 1.0
RD Series	RD-1, RD-2, RD-3P, RD-4P
Timers	T3 (20, 40, 60 minutes)

WALL CONTROL DIMENSIONS


Vectra Series


RD Series

T3 Timer


DIMENSIONS DATA

Α	В	С	D	Е	F	G	Н	1
in (mm)	in (mm)	in (mm)	in (mm)	in (mm)	in (mm)	in (mm)	in (mm)	in (mm)
E1 6 (1210)	47.2 (1202)	20 (509)	2 5 (62)	0 (202)	0 (202)	36.3 (030)	22 E (02E)	22 (550)

VENTILATION PERFORMANCE

in. wg. (Pa)	0.2 (50)	0.4 (100)	0.6 (150)	0.8 (200)	1.0 (250)	1.2 (400)	1.8 (450)
	cfm (L/s)	cfm (L/s)	cfm (L/s)	cfm (L/s)	cfm (L/s)	cfm (L/s)	cfm (L/s)
Supply High	1230 (580)	1179 (556)	1121 (529)	1057 (499)	985 (465)	906 (482)	629 (297)
Supply Med	904 (427)	817 (386)	729 (344)	639 (302)	548 (259)	455 (215)	167 (79)
Supply Low	650 0307	544 (257)	439 (207)	333 (157)	227 (107)	121 (57)	_

ΞŅ	NERGY	PER	FORMANCE	CORE*						
	Net	Air Flow	Net Effectiveness	Net Effectiveness	s Net Effecti	600	650	700	Airflo	
/B	L/s	CFM	Sensible	Latent	Tota	₹ 70	Ť	T		ſ
HEATING	396	840	54	35	50	effectiveness				
Ξ	297	630	57	40	54		-0-	2		
NG	396	840	51	32	49	Sensible 25 Sensib				
COOLING	297	630	60	37	53	600	650	700	75 Airflow	

*Actual performance may vary pending conditions

Quoted by:	Date:	
Project:	Remarks:	
Quantity:		
Model:		
Site:		
Architect:		
Engineer:		
Contractor:		